题目内容

【题目】如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角分线,若在边AB上截取BE=BC,连接DE,则图中共有个等腰三角形.

【答案】5
【解析】解:∵AB=AC,

∴△ABC是等腰三角形;

∵AB=AC,∠A=36°,

∴∠ABC=∠C=72°,

∵BD是△ABC的角平分线,

∴∠ABD=∠DBC= ∠ABC=36°,

∴∠A=∠ABD=36°,

∴BD=AD,

∴△ABD是等腰三角形;

在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,

∴∠C=∠BDC=72°,

∴BD=BC,

∴△BCD是等腰三角形;

∵BE=BC,

∴BD=BE,

∴△BDE是等腰三角形;

∴∠BED=(180°﹣36°)÷2=72°,

∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,

∴∠A=∠ADE,

∴DE=AE,

∴△ADE是等腰三角形;

∴图中的等腰三角形有5个.

所以答案是:5.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网