题目内容
【题目】(本小题满分9分)已知:关于的方程.
(1)若方程有两个相等的实数根,求的值,并求出这时的根.
(2)问:是否存在正数,使方程的两个实数根的平方和等于136;若存在,请求出满足条件的值;若不存在,请说明理由.
【答案】(1)=1, ;(2)不存在.
【解析】试题分析:(1)根据一元二次方程的根的判别式△=0,建立关于m的等式,由此求出m的取值.再化简方程,进而求出方程相等的两根;
(2)利用根与系数的关系,化简x12+x22=136,即(x1+x2)2﹣2x1x2=136.根据根与系数的关系即可得到关于m的方程,解得m的值,再判断m是否符合满足方程根的判别式.
试题解析:解:(1)若方程有两个相等的实数根,则有△=b2﹣4ac=(8﹣4m)2﹣16m2=64﹣64m=0,解得m=1,当m=1时,原方程为x2+4x+4=0,∴x1=x2=﹣2;
(2)不存在.
假设存在,则有x12+x22=136.
∵x1+x2=4m﹣8,x1x2=4m2,∴(x1+x2)2﹣2x1x2=136.
即(4m﹣8)2﹣2×4m2=136,∴m2﹣8m﹣9=0,(m﹣9)(m+1)=0,∴m1=9,m2=﹣1.
∵△=(8﹣4m)2﹣16m2=64﹣64m≥0,∴0<m≤1,∴m1=9,m2=﹣1都不符合题意,∴不存在正数m,使方程的两个实数根的平方和等于136.
练习册系列答案
相关题目