题目内容
【题目】如图,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若HG=24 cm,WG=8 cm,CW=6 cm,求阴影部分的面积.
【答案】阴影部分的面积是168cm2.
【解析】
根据平移的变换只改变图形的位置不改变图形的形状与大小可得梯形ABCD的面积等于梯形EFGH的面积,CD=HG,从而得到阴影部分的面积等于梯形DWGH的面积,再求出DW的长,然后利用梯形的面积公式列式计算即可得解.
由平移的性质可知梯形ABCD的面积=梯形EFGH的面积,CD=HG=24 cm,
所以阴影部分的面积=梯形DWGH的面积.
因为CW=6cm,
所以DW=CD-CW=24-6=18(cm),
所以阴影部分的面积= (DW+HG)·WG=×(18+24)×8=168(cm2).
答:阴影部分的面积是168cm2.
练习册系列答案
相关题目
【题目】有这样一个问题:探究函数y=的图象与性质.小美根据学习函数的经验,对函数y=的图象与性质进行了探究下面是小美的探究过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | td style="width:28.95pt; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle"> | m | … |
求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)结合函数的图象,写出该函数的一条性质: .