题目内容
【题目】(8分)如图,在正方形ABCD中,对角线AC、BD相交于O,E、F分别在OD、OC上,且DE=CF,连结DF、AE,AE的延长线交于DF于点M,求证:AM⊥DF.
【答案】证明见试题解析.
【解析】
试题分析:根据DE=CF,可得出OE=OF,继而证明△AOE≌△DOF,得出∠OAE=∠ODF,然后利用等角代换可得出∠DME=90°,即得出了结论.
试题解析:∵四边形ABCD是正方形,∴CO=DO,又∵DE=CF,∴OD﹣DE=OC﹣CF,即OF=OE,在△AOE和△DOF中,∵AO=DO,∠AOD=∠DOF,OE=OF,∴△AOE≌△DOF(SAS),∴∠OAE=∠ODF,∵∠OAE+∠AEO=90°,∠AEO=∠DEM,∴∠ODF+∠DEM=90°,即可得AM⊥DF.
练习册系列答案
相关题目