题目内容

【题目】如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒.

(1)当点B与点D重合时,求t的值;

(2)设BCD的面积为S,当t为何值时,S=

(3)连接MB,当MBOA时,如果抛物线y=ax2﹣10ax的顶点在ABM内部(不包括边),求a的取值范围.

【答案】(1)t=8(2)当t=3或3+5时,S=(3)-<a<-

【解析】解:(1

∴Rt△CAO∽Rt△ABE·························· 2

························· 3

2)由Rt△CAO∽Rt△ABE可知:··········· 4

08时,

····························· 6

8时,

(为负数,舍去).

时,······················ 8

3)过MMN轴于N,则

MBOA时,··············· 9

抛物线的顶点坐标为(5).············· 10

它的顶点在直线上移动.

直线MB于点(52),交AB于点(51).············· 11

∴12

12

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网