题目内容
【题目】如图,是的直径,是上的一点,过点作于点,交于点,且=.
求证:是的切线;
若,,求的长.
【答案】(1)详见解析;(2).
【解析】
(1)连接OC,由=,根据圆周角定理得∠1=∠2,而∠1=∠OCA,则∠2=∠OCA,则可判断OC∥AD,由于AD⊥CD,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;
(2)连接BE交OC于F,由AB是⊙O的直径得∠ACB=90°.在Rt△ACB中,根据正切的定义得AC=4,再利用勾股定理计算出AB=5,然后证明Rt△ABC∽Rt△ACD,利用相似比先计算出AD=,再计算出CD=;根据垂径定理的推论由=得OC⊥BE,BF=EF,于是可判断四边形DEFC为矩形,所以EF=CD=,则BE=2EF=,然后在Rt△ABE中,利用勾股定理计算出AE=,再利用DE=AD﹣AE求解.
(1)连接OC,如图,∵=,∴∠1=∠2.
∵OC=OA,∴∠1=∠OCA,∴∠2=∠OCA,∴OC∥AD.
∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;
(2)连接BE交OC于F,如图,∵AB是⊙O的直径,∴∠ACB=90°.在Rt△ACB中,tan∠CAB==,而BC=3,∴AC=4,∴AB==5.
∵∠1=∠2,∴Rt△ABC∽Rt△ACD,∴==,即=,解得:AD=
∵=,即=,解得:CD=
=,∴OC⊥BE,BF=EF,∴四边形DEFC为矩形,∴EF=CD=,∴BE=2EF=.
∵AB为直径,∴∠BEA=90°.在Rt△ABE中,AE===,∴DE=AD﹣AE=﹣=.
练习册系列答案
相关题目