题目内容

【题目】图(1)是我们常见的“箭头图”,其中隐藏着哪些数学知识呢?下面请你解决以下问题:

(1)观察如图(1)“箭头图”,试探究∠BDC与∠A、∠B、∠C之间大小的关系,并说明理由;
(2)请你直接利用以上结论,回答下列两个问题:
①如图(2),把一块三角板XYZ放置在△ABC上,使其两条直角边XY、XZ恰好经过点B、C.若∠A=50°,求∠ABX+∠ACX

②如图(3),∠ABD,∠ACD的五等分线分别相交于点G1、G2、G3、G4 , 若∠BDC=135°,∠BG1C=67°,求∠A的度数.

【答案】
(1)解:∠BDC=∠A+∠B+∠C.理由:

连接AD并延长到M.

因为∠BDM=∠BAD+∠B,∠CDM=∠CAD+∠C,

所以∠BDM+∠CDM=∠BAD+∠B+∠CAD+∠C,

即∠BDC=∠BAC+∠B+∠C.


(2)解:①由(1)知:∠BXC=∠A+∠ABX+∠ACX,

由于∠BXC=90°,∠A=50°

所以∠ABX+∠ACX

=∠BXC﹣∠A

=90°﹣50°

=40°.

②在箭头图G1BDC中

因为∠BDC=∠G1+∠G1BD+∠G1CD,

又∵∠BDC=135°,∠BG1C=67°

∵∠ABD,∠ACD的五等分线分别相交于点G1、G2、G3、G4

∴4(∠DBG4+∠DCG4)=135°﹣67°

∴∠DBG4+∠DCG4=17°.

∴∠ABG1+∠ACG1=17°

∵在箭头图G1BAC中

∵∠BG1C=∠A+∠G1BA+∠G1CA,

又∵∠BG1C=67°,

∴∠A=50°.

答:∠A的度数是50°.


【解析】第1小题,连接AD并延长到M,利用三角形的一个外角等于和它不相邻的两个内角的和可得∠BDC=∠BAC+∠B+∠C;第2小题,由(1)知:∠BXC=∠A+∠ABX+∠ACX,再根据已知条件可求解。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网