题目内容

【题目】如图,在平面直角坐标系中,二次函数的图象与轴交于两点,点在原点的左侧,点的坐标为,与轴交于点,点是直线下方的抛物线上一动点.

求这个二次函数的表达式.

连接,并把沿翻折,得到四边形,那么是否存在点,使四边形为菱形?若存在,请求出此时点的坐标;若不存在,请说明理由.

当点运动到什么位置时,四边形的面积最大?求出此时点的坐标和四边形的最大面积.

【答案】(1);(2)点的坐标为;(3)点的坐标为,四边形的面积的最大值为

【解析】

(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;

(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;

(3)由于ABC的面积为定值,当四边形ABPC的面积最大时,BPC的面积最大;过Py轴的平行线,交直线BCQ,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.

解:两点的坐标代入得

解得:

所以二次函数的表达式为:

存在点,使四边形为菱形;

点坐标为

若四边形是菱形,则有

连接,则

又∵

解得(不合题意,舍去),

点的坐标为

过点轴的平行线与交于点,与交于点,设

设直线的解析式为:

解得:

∴直线的解析式为

点的坐标为

解得:

时,四边形的面积最大

此时点的坐标为,四边形的面积的最大值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网