题目内容
【题目】矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.
(1)求AD的长;
(2)求经过A、B、D三点的抛物线的解析式;
(3)在直线AM下方,(2)中的抛物线上是否存在点P,使S△PAM =?若存在,求出P点坐标;若不存在,请说明理由.
【答案】(1)AD=7;(2);(3)P点坐标为(3,1)、(,)
【解析】试题分析: (1)作BP⊥AD于P,BQ⊥MC于Q,根据旋转的性质得AB=AO=5,BE=OC=AD,∠ABE=90°,利用等角的余角相等得∠ABP=∠MBQ,可证明Rt△ABP∽Rt△MBQ得到,设BQ=PD=x,AP=y,则AD=x+y,所以BM=x+y-2,利用比例性质得到PBMQ=xy,而PB-MQ=DQ-MQ=DM=1,利用完全平方公式和勾股定理得到52-y2-2xy+(x+y-2)2-x2=1,解得x+y=7,则BM=5,BE=BM+ME=7,所以AD=7;
(2)由AB=BM可判断Rt△ABP≌Rt△MBQ,则BQ=PD=7-AP,MQ=AP,利用勾股定理得到(7-MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,则BQ=4,根据三角形面积公式和梯形面积公式,利用S阴影部分=S梯形ABQD-S△BQM进行计算即可;然后利用待定系数法求直线AM的解析式.先确定B(3,1),然后利用待定系数法求抛物线的解析式;
(3)当点P在线段AM的下方的抛物线上时,作PK∥y轴交AM于K,如图2设P(x,x2-x+5),则K(x,-x+5),则KP=-x2+x,根据三角形面积公式得到(-x2+x)7=,解得x1=3,x2=,于是得到此时P点坐标为(3,1)、(,);再求出过点(3,1)与(,)的直线l的解析式为y=-
试题解析:
解:⑴ 如图1,连接AM,
在矩形AOCD中,∠AOC=∠ADC=90°,AD=OC,CD=AO=5,
∵CM=4,
∴DM=1,
由旋转,得∠B=∠AOC =90°,BE=OC,AB=AO=5,
设BE=OC= AD=x,
在Rt△ADM中,AM2=x2+1,
在Rt△ABM中,AM2=(x-2) 2+25,
∴x2+1=(x-2) 2+25,解得x=7,
∴AD=7.
⑵ 如图2,过点B作x轴的平行线,交AO于G,交DC于H,
则 ∠AGB=∠BHM =90°,
∴ ∠ABG+∠BAG =90°,
∵ ∠ABE=90°,
∴ ∠ABG+∠MBH =90°,
∴ ∠BAG =∠MBH ,
∵ AB=BM=5,
∴ △AGB≌△BHM(AAS),
∴ BH=AG,MH=BG,
设MH=BG=n,则DH=n+1,∴BH=AG=n+1,
∵ GH=OC=AD=7,
∴ n+(n+1)=7,
∴ n=3,
∴ AG=4,BG=3,
∵ A(0,5),
∴ 点B的坐标为(3,1),
设经过A、B、D三点的抛物线的解析式为y=ax+bx+5,将B(3,1),
D(7,5)代入,得
解得
∴y=x2-x+5.
图2
⑶ 存在.
设直线AM的解析式为y=kx+5,将M(7,4)代入,得k=,
∴y=-x+5,
∵点P在线段AD的下方的抛物线上,作PK∥y轴交AM于K,
设P(x,),则K(x,),
∴KP=﹣=,
∵S△PAM=,
∴7=,
整理得7x2﹣46x+75=0,
解得x1=3,x2=,
此时P点坐标为(3,1)、(,).
点睛: 本题考查了几何变换综合题:熟练掌握旋转的性质、矩形的性质和三角形全等于相似的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会进行代数式的变形.