题目内容
【题目】某专卖店准备购进甲、乙两种运动鞋,其进价和售价如下表所示。已知用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
运动鞋价格 | 甲 | 乙 |
进价元/双) | m | m-30 |
售价(元/双) | 300 | 200 |
(1)求m的值;
(2)要使购进的甲,乙两种运动鞋共200双的总利润不少于21700元且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店决定对甲种运动鞋每双优惠a(60<a<80)元出售,乙种运动鞋价格不变,那么该专卖店要获得最大利润应如何进货?
【答案】(1)m=150;(2)该专卖店有9种进货方案;(3)此时应购进甲种运动鞋82双,购进乙种运动鞋118双.
【解析】
(1)根据“用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同”列出方程并解答;
(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;
(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.
(1)依题意得: ,
解得:m=150,
经检验:m=150是原方程的根,
∴m=150;
(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,
解得:81≤x≤90,
∵x为正整数,
∴该专卖店有9种进货方案;
(3)设总利润为W元,则
W=(300﹣150﹣a)x+(200﹣120)(200﹣x)=(70﹣a)x+16000,
①当60<a<70时,70﹣a>0,W随x的增大而增大,当x=90时,W有最大值,
即此时应购进甲种运动鞋90双,购进乙种运动鞋110双;
②当a=70时,70﹣a=0,W=16000,(2)中所有方案获利都一样;
③当70<a<80时,70﹣a<0,W随x的增大而减小,当x=82时,W有最大值,
即此时应购进甲种运动鞋82双,购进乙种运动鞋118双.