题目内容

【题目】在△ABC中,AB=AC,∠BAC=150°,点A到BC的距离为1,与AB重合的一条射线AP,从AB开始,以每秒15°的速度绕点A逆时针匀速旋转,到达AC后立即以相同的速度返回AB,到达后立即重复上述旋转过程,设AP与BC边的交点为M,旋转2019秒时,BM= , CM=

【答案】2;2+2
【解析】解:过A作AD⊥BC于D,则AD=1, ∵150=10×15,即AP从AB开始,绕点A逆时针匀速旋转10秒到达AC后再经过10秒返回AB,
而2019=100×20+19=100×20+10+9,
∴当旋转2019秒时,AP从AB绕点A逆时针匀速旋转了9秒,
∴此时CAP=15°×9=135°,
∴∠BAP=150°﹣135°=15°,
∵AB=AC,
∴BD=CD,∠B=∠C= (180°﹣150°)=15°,
∴AM=BM,∠AMD=∠B+∠BAP=30°,
∴BM=AM=2AD=2,MD=
∴CD=BD=2+
∴CM=2+2
所以答案是:2,2+2

【考点精析】掌握等腰三角形的性质和旋转的性质是解答本题的根本,需要知道等腰三角形的两个底角相等(简称:等边对等角);①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网