题目内容
【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正确的是( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】D
【解析】
①根据角平分线的性质得出结论:DE=CD;
②证明△ACD≌△AED,得AD平分∠CDE;
③由四边形的内角和为360°得∠CDE+∠BAC=180°,再由平角的定义可得结论是正确的;
④由△ACD≌△AED得AC=AE,再由AB=AE+BE,得出结论是正确的.
①∵∠C=90°,AD平分∠BAC,DE⊥AB,
∴DE=CD;
所以此选项结论正确;
②∵DE=CD,AD=AD,∠ACD=∠AED=90°,
∴△ACD≌△AED,
∴∠ADC=∠ADE,
∴AD平分∠CDE,
所以此选项结论正确;
③∵∠ACD=∠AED=90°,
∴∠CDE+∠BAC=360°-90°-90°=180°,
∵∠BDE+∠CDE=180°,
∴∠BAC=∠BDE,
所以此选项结论正确;
④∵△ACD≌△AED,
∴AC=AE,
∵AB=AE+BE,
∴BE+AC=AB,
所以此选项结论正确;
本题正确的结论有4个,故选D.
练习册系列答案
相关题目