题目内容
【题目】如图,直线y=4﹣x与双曲线y交于A,B两点,过B作直线BC⊥y轴,垂足为C,则以OA为直径的圆与直线BC的交点坐标是_____.
【答案】(﹣1,1)和(2,1).
【解析】
求得交点A、B的坐标,即可求得直径AB的长度和P点的坐标,从而求得PE的长度,利用勾股定理求得EM=EN=,结合P的坐标即可求得以OA为直径的圆与直线BC的交点坐标.
由求得或,
∴A(1,3),B(3,1),
∴OA,
设OA的中点为P,以AB为直径的⊙P与直线BC的交点为M、N,
过P点作PD⊥x轴于D,交BC于E,连接PN,
∵P是OA的中点,
∴P(,),
∴PD,
∵BC⊥y轴,垂足为C,
∴BC∥x轴,
∴PD⊥BC,
∴PE1,
在Rt△PEN中,EM=EN,
∴M(﹣1,1),N(2,1).
∴以OA为直径的圆与直线BC的交点坐标是(﹣1,1)和(2,1),
故答案为(﹣1,1)和(2,1).
练习册系列答案
相关题目