题目内容
【题目】在平面直角坐标系xOy中,点P的坐标为(x1 , y1),点Q的坐标为(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.
(1)已知点A的坐标为(1,0), ①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为 ,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.
【答案】
(1)解:①∵A(1,0),B(3,1)
由定义可知:点A,B的“相关矩形”的底与高分别为2和1,
∴点A,B的“相关矩形”的面积为2×1=2;
②由定义可知:AC是点A,C的“相关矩形”的对角线,
又∵点A,C的“相关矩形”为正方形
∴直线AC与x轴的夹角为45°,
设直线AC的解析为:y=x+m或y=﹣x+n
把(1,0)分别y=x+m,
∴m=﹣1,
∴直线AC的解析为:y=x﹣1,
把(1,0)代入y=﹣x+n,
∴n=1,
∴y=﹣x+1,
综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;
(2)解:设直线MN的解析式为y=kx+b,
∵点M,N的“相关矩形”为正方形,
∴由定义可知:直线MN与x轴的夹角为45°,
∴k=±1,
∵点N在⊙O上,
∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形,
当k=1时,
作⊙O的切线AD和BC,且与直线MN平行,
其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,
连接OA,OC,
把M(m,3)代入y=x+b,
∴b=3﹣m,
∴直线MN的解析式为:y=x+3﹣m
∵∠ADO=45°,∠OAD=90°,
∴OD= OA=2,
∴D(0,2)
同理可得:B(0,﹣2),
∴令x=0代入y=x+3﹣m,
∴y=3﹣m,
∴﹣2≤3﹣m≤2,
∴1≤m≤5,
当k=﹣1时,把M(m,3)代入y=﹣x+b,
∴b=3+m,
∴直线MN的解析式为:y=﹣x+3+m,
同理可得:﹣2≤3+m≤2,
∴﹣5≤m≤﹣1;
综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是:1≤m≤5或﹣5≤m≤﹣1
【解析】(1)①由相关矩形的定义可知:要求A与B的相关矩形面积,则AB必为对角线,利用A、B两点的坐标即可求出该矩形的底与高的长度,进而可求出该矩形的面积;②由定义可知,AC必为正方形的对角线,所以AC与x轴的夹角必为45,设直线AC的解析式为;y=kx+b,由此可知k=±1,再(1,0)代入y=kx+b,即可求出b的值;(2)由定义可知,MN必为相关矩形的对角线,若该相关矩形的为正方形,即直线MN与x轴的夹角为45°,由因为点N在圆O上,所以该直线MN与圆O一定要有交点,由此可以求出m的范围.