题目内容
如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.
(1)求证:四边形ABCD是矩形;
(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.
(1)求证:四边形ABCD是矩形;
(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.
(1)证明:∵∠1=∠2,
∴BO=CO,即2BO=2CO.
∵四边形ABCD是平行四边形,
∴AO=CO,BO=OD,
∴AC=2CO,BD=2BO,
∴AC=BD.
∵四边形ABCD是平行四边形,
∴四边形ABCD是矩形;
(2)在△BOC中,∵∠BOC=120°,
∴∠1=∠2=(180°-120°)÷2=30°,
∴在Rt△ABC中,AC=2AB=2×4=8(cm),
∴BC=
=4
(cm).
∴四边形ABCD的面积=4
×4=16
(cm2).
∴BO=CO,即2BO=2CO.
∵四边形ABCD是平行四边形,
∴AO=CO,BO=OD,
∴AC=2CO,BD=2BO,
∴AC=BD.
∵四边形ABCD是平行四边形,
∴四边形ABCD是矩形;
(2)在△BOC中,∵∠BOC=120°,
∴∠1=∠2=(180°-120°)÷2=30°,
∴在Rt△ABC中,AC=2AB=2×4=8(cm),
∴BC=
82-42 |
3 |
∴四边形ABCD的面积=4
3 |
3 |
练习册系列答案
相关题目