题目内容

已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)
AF
AN
AP
AD
是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)

(1)如图:

(2)解法一:
AF
AN
AP
AD
不相等.
假设
AF
AN
=
AP
AD

则由相似三角形的性质,得MNDC,
∵∠D=90°
∴DC⊥AD
∴MN⊥AD
∵据题意得,A与P关于MN对称,
∴MN⊥AP
∵据题意,P与D不重合,
∴这与“过一点(A)只能作一条直线与已知直线(MN)垂直”矛盾,
∴假设不成立,
AF
AN
=
AP
AD
不成立;

解法二:
AF
AN
AP
AD
不相等.
理由如下:
∵P,A关于MN对称,
∴MN垂直平分AP
∴cos∠FAN=
AF
AN

∵∠D=90°
∴cos∠PAD=
AD
AP

∵∠FAN=∠PAD
AF
AN
=
AD
AP

∵P不与D重合,P在边DC上
∴AD≠AP
AD
AP
AP
AD

从而
AF
AN
AP
AD



(3)∵AM是⊙O的切线,
∴∠AMP=90°
∴∠CMP+∠AMB=90°
∵∠BAM+∠AMB=90°
∴∠CMP=∠BAM
∵MN垂直平分AP,
∴MA=MP
∵∠B=∠C=90°
∴△ABM≌△MCP
∴MC=AB=4
设PD=x,则CP=4-x
∴BM=PC=4-x
连接HO并延长交BC于J,
∵AD是⊙O的切线
∴∠JHD=90°
∴HDCJ为矩形
∴OJCP
∴△MOJ△MPC
∴OJ:CP=MO:MP=1:2
∴OJ=
1
2
(4-x)
OH=
1
2
MP=4-OJ=
1
2
(4+x)
∵MC2=MP2-CP2
∴(4+x)2-(4-x)2=16
解得:x=1,即PD=1,PC=3
∴BC=BM+MC=PC+AB=3+4=7.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网