题目内容

已知关于的一元二次方程
(1)求证:当取不等于l的实数时,此方程总有两个实数根.
(2)若是此方程的两根,并且,直线轴于点A,交轴于点B,坐标原点O关于直线的对称点O′在反比例函数的图象上,求反比例函数的解析式.
(3)在(2)的成立的条件下,将直线绕点A逆时针旋转角,得到直线′,′交轴于点P,过点P作轴的平行线,与上述反比例函数的图象交于点Q,当四边形APQO′的面积为时,求角的值.

(1)证明
为关于的一元二次方程
,即≠1
∴△=
∴△≥0
∴当取不等于1的实数时,此方程总有两个实数根.
,
(2)∵ 

又∵是方程的两根



∴直线的解析式为
∴直线轴交点A(-3,0)与轴交点B(0,3)
∴△ABO为等腰直角三角形
∴坐标原点O关于直线的对称点O′的坐标为(-3,3)
∴反比例函数的解析式为
(3)解:设点P的坐标为(0,P),延长PQ和AO′交于点G
∵PQ∥轴,与反比例函数图象交于点Q
∴四边形AOPG为矩形
∴Q的坐标为(,P)
∴G(-3,P)
当0°<<45°,即P>3时
∵GP=3,GQ=3,GO′=P-3,GA=P
∴S四边形APQO’=S△APGS△GQO’
×GA×GP-×GQ×GO’
×P×3-(3)×(P-3)

 
∴P=
经检验,P= 符合题意
∴P(0,
∴AP=6
点A关于轴的对称点A′(3,0),连结A′P,
易得AP=PA′=6,又∵AA′=6
∴AA′=AP=A′P
∴∠PAO=60°
∵∠BAO=45°
=∠PAO -∠BAO =60°-45°=15°
当45°≤<90°,即P<-3时,
可类似地求得P=,这与P<-3矛盾,所以此时点P不存在
∴旋转角=15°

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网