题目内容
【题目】如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.
(1)求抛物线的对称轴及点A的坐标;
(2)连结AD,CD,求△ACD的面积;
(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.
【答案】(1)抛物线的对称轴x=2,A(6,0);(2)△ACD的面积为12;(3)点P的坐标为(2,2)或(2,6)或(2,3).
【解析】
(1)令y=0,求出x,即可求出点A、B的坐标,令x=0,求出y即可求出点C的坐标,再根据对称轴公式即可求出抛物线的对称轴;
(2)先将二次函数的一般式化成顶点式,即可求出点D的坐标,利用待定系数法求出直线AC的解析式,从而求出点F的坐标,根据“铅垂高,水平宽”求面积即可;
(3)根据等腰三角形的底分类讨论,①过点O作OM⊥AC交DE于点P,交AC于点M,根据等腰三角形的性质和垂直平分线的性质即可得出此时AC为等腰三角形ACP的底边,且△OEP为等腰直角三角形,从而求出点P坐标;②过点C作CP⊥DE于点P,求出PD,可得此时△PCD是以CD为底边的等腰直角三角形,从而求出点P坐标;③作AD的垂直平分线交DE于点P,根据垂直平分线的性质可得PD=PA,设PD=x,根据勾股定理列出方程即可求出x,从而求出点P的坐标.
(1)对于抛物线y=﹣x2+2x+6令y=0,得到﹣x2+2x+6=0,解得x=﹣2或6,
∴B(﹣2,0),A(6,0),
令x=0,得到y=6,
∴C(0,6),
∴抛物线的对称轴x=﹣=2,A(6,0).
(2)∵y=﹣x2+2x+6=,
∴抛物线的顶点坐标D(2,8),
设直线AC的解析式为y=kx+b,
将A(6,0)和C(0,6)代入解析式,得
解得:,
∴直线AC的解析式为y=﹣x+6,
将x=2代入y=﹣x+6中,解得y=4
∴F(2,4),
∴DF=4,
∴==12;
(3)①如图1,过点O作OM⊥AC交DE于点P,交AC于点M,
∵A(6,0),C(0,6),
∴OA=OC=6,
∴CM=AM,∠MOA=∠COA=45°
∴CP=AP,△OEP为等腰直角三角形,
∴此时AC为等腰三角形ACP的底边,OE=PE=2.
∴P(2,2),
②如图2,过点C作CP⊥DE于点P,
∵OC=6,DE=8,
∴PD=DE﹣PE=2,
∴PD=PC,
此时△PCD是以CD为底边的等腰直角三角形,
∴P(2,6),
③如图3,作AD的垂直平分线交DE于点P,
则PD=PA,
设PD=x,则PE=8﹣x,在Rt△PAE中,PE2+AE2=PA2,
∴(8﹣x)2+42=x2,
解得x=5,
∴PE=8﹣5=3,
∴P(2,3),
综上所述:点P的坐标为(2,2)或(2,6)或(2,3).