题目内容
【题目】如图1,在矩形ABCD中,BG⊥AC交AC于点G,E为AB中点,EG的延长线交AD于点F,连接CF.
(1)若∠ABG=30°,证明AF=FD;
(2)如图2,若∠EFC=90°,连接BF,FM⊥FB交CD于点M.
①证明:DM=MC;
②求的值.
【答案】(1)见解析;(2)①见解析;②.
【解析】
(1)方法一:证明△AEF~△BAC,利用相似三角形的性质即可解决问题.
方法二:连接BD,证明EF∥BD即可解决问题.
(2)①方法一:利用相似三角形的性质证明即可.方法二:如图2,延长FM、BC交于点N,证明四边形DFCN是平行四边形即可.
②设AE=x,AF=y,求出AB2,AD2(用a表示),即可解决问题.
(1)∵∠ABG=30°,∠ABC=90°,
∴∠BAG=60°,
在Rt△ABG中,AE=BE,
∴∠AEF=60°=∠BAC,
又∵∠EAF=∠ABC=90°,
∴△AEF~△BAC,
∴,
又∵BC=AD,
∴,
即AF=FD.
(2)①∵∠EAF=∠EFC=∠FDC=90°,
∴△EAF~△FDC,
∴,
同理可证△ABF~△DFM,
∴,
即,
∴,
∴,
∴DC=2DM,
即DM=CM,
②设AE=x,AF=y,
在Rt△ABG中,AE=BE,
∴EA=EG,
∴∠EAG=∠EGA=∠FGC,
又∵∠EAF=∠EFC=90°,
∴∠FAC=∠FCA,
∴FA=FC,
∵∠EAF=∠EFC=∠FDC=90°,
∴△EAF~△FDC,
∴,
∴,
在Rt△DFC中,DF2+DC2=FC2=AF2
∴,
∴,
∴,
方法二:(1)如图1,连接BD.
在Rt△ABG中,∠BAG=90°﹣30°=60°,
∵矩形ABCD,
∴OA=OB,
∴∠OBA=∠OAB=60°,
在Rt△ABG中,AE=BE,
∴EA=EG,
又∵∠OAB=60°,
∴∠AEG=60°=∠ABO,
∴EF∥BD,
又∵AE=BE,
∴AF=FD
(2)①另证:如图2,延长FM、BC交于点N,
∵∠EAF=∠EFC=∠FDC=90°,
∴△EAF~△FDC,
∴
∵∠EBC=∠EFC=90°,
∴∠FCN=∠FEB
∵∠EFC=∠BFN=90°,
∴∠EFB=∠CFN
∴△EFB~△CFN,
∴
又∵,
∴CN=DF
又∵CN∥DF,
∴四边形DFCN是平行四边形,
∴DM=MC.