题目内容
【题目】已知, 与成正比例, 与成反比例,且当时, ,当时, ,求与之间的函数关系式.
【答案】与之间的函数关系式为
【解析】(1)根据正比例函数和反比例函数的定义得到y1=kx,y2=,则y=kx+,再利用当x=1时,y= -1,当x=3时,y=5得到关于k、m的方程组,然后解方程组求出k、m,即可得到y与x之间的函数关系式;
解:(1)设y1=kx,y2=,则y=kx+,
根据题意得,
解得,
所以y与x之间的函数关系式为 .
“点睛”本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=xk(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;根据题意得出k、m的值是解题的关键.
练习册系列答案
相关题目
【题目】(6分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 68 | 109 | 136 | 345 | 368 | 701 |
摸到乒乓球的频率 | 0.68 | 0.73 | 0.68 | 0.69 | 0.70 | 0.70 |
(1)请估计:当n很大时,摸到白球的频率将会接近________;
(2)假如你去摸一次,你摸到白球的概率是_______,摸到黑球的概率是_______;
(3)试估算口袋中黑、白两种颜色的球各有多少只?