题目内容
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c的图象交x轴于A(4,0),B(﹣1,0)两点,交y轴于点C,连结AC.
(1)填空:该抛物线的函数解析式为 ,其对称轴为直线 ;
(2)若P是抛物线在第一象限内图象上的一动点,过点P作x轴的垂线,交AC于点Q,试求线段PQ的最大值;
(3)在(2)的条件下,当线段PQ最大时,在x轴上有一点E(不与点O,A重合),且EQ=EA,在x轴上是否存在点D,使得△ACD与△AEQ相似?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.
【答案】(1)见解析;(2)证明见解析.
【解析】
(1)把代入抛物线中列方程组,解出可得b和c的值,可得抛物线的解析式,配方成顶点式可得对称轴;
(2)先利用待定系数法求直线AC的解析式,再设点P的坐标,并表示点Q的坐标,根据铅直高度表示PQ的长,并配方可得PQ的最大值;
(3)分两种情况:①当D在线段OA上时,如图1,根据△AEQ∽△ADC,由EQ=EA,得CD=AD,利用勾股定理解决问题;②当D在点B的左侧时,如图2根据三角形相似,由EQ=EA可得OA=OD,可得D的坐标.
.解:(1)把代入抛物线中得:
解得:
∴
∴抛物线的函数解析式为:其对称轴为直线:
故答案为:
(2)∵A(4,0),C(0,3),
∴直线AC的解析式为:
设,则
∴
∵P是抛物线在第一象限内图象上的一动点,
∴0<x<4,
∴当x=2时,PQ的最大值为3;
(3)分两种情况:
①当D在线段OA上时,如图1,△AEQ∽△ADC,
∵EQ=EA,
∴CD=AD,
设CD=a,则AD=a,OD=4a,
在Rt△OCD中,由勾股定理得:
∴
∴
∴
②当D在点B的左侧时,如图2,△AEQ∽△ACD,
∵EQ=EA,
∴CD=AC,
∵OC⊥AD,
∴OD=OA=4,
∴D(4,0),
综上所述,当△ACD与△AEQ相似时,点D的坐标为或(4,0).