题目内容
【题目】-6+0-10=
【答案】-16【解析】原式=-6+(-10)=-16【考点精析】掌握有理数的加减混合运算是解答本题的根本,需要知道混合运算法则:先乘方,后乘除,最后加减.
【题目】计算:(xy)2(x3y)2=____.
【题目】P是直线l上的任意一点,点A在圆O上,设OP的最小值为m,若直线l过点A,则m与OA的大小关系是_____.
【题目】数轴上与原点之间的距离小于5的所有整数的相加之和是 .
【题目】方程x(x﹣1)=0的根是( )
A.x=0B.x=1C.x1=0,x2=1D.x1=0,x2=﹣1
【题目】已知某二次函数,当x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大,则该二次函数的解析式可以是( )
A.y=3(x+1)2B.y=3(x﹣1)2C.y=﹣3(x+1)2D.y=﹣3(x﹣1)2
【题目】已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC= ,直接写出∠DOE的度数(用含 的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;
【题目】 若关于x的不等式x-m≥-1的解集如图所示,则m等于_______________.
【题目】如图,抛物线(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.
(1)求此抛物线的解析式;
(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;
(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.