题目内容
【题目】如图,在△ABC中,∠C=90°,AC=BC=4cm,点D是斜边AB的中点,点E从点B出发以1cm/s的速度向点C运动,点F同时从点C出发以一定的速度沿射线CA方向运动,规定:当点E到终点C时停止运动;设运动的时间为x秒,连接DE、DF.
(1)填空:S△ABC= cm2;
(2)当x=1且点F运动的速度也是1cm/s时,求证:DE=DF;
(3)若动点F以3cm/s的速度沿射线CA方向运动;在点E、点F运动过程中,如果有某个时间x,使得△ADF的面积与△BDE的面积存在两倍关系,请你直接写出时间x的值;
【答案】(1)8(2)证明见解析(3)或4或或
【解析】
(1)直接可求△ABC的面积;(2)连接CD,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD,且BE=CF,即可证△CDF≌△BDE,可得DE=DF;
(3)分△ADF的面积是△BDE的面积的两倍和△BDE与△ADF的面积的2倍两种情况讨论,根据题意列出方程可求x的值.
(1)∵S△ABC=AC×BC
∴S△ABC=×4×4=8(cm2)
故答案为:8
(2)如图:连接CD
∵AC=BC,D是AB中点
∴CD平分∠ACB
又∵∠ACB=90°
∴∠A=∠B=∠ACD=∠DCB=45°
∴CD=BD
依题意得:BE=CF
∴在△CDF与△BDE中,
∴△CDF≌△BDE(SAS)
∴DE=DF
(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,
∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°
∴△ADN≌△BDM(AAS)
∴DN=DM
若S△ADF=2S△BDE.
∴×AF×DN=2××BE×DM
∴|4﹣3x|=2x
∴x1=4,x2=
若2S△ADF=S△BDE
∴2××AF×DN=×BE×DM
∴2×|4﹣3x|=x
∴x1=,x2=
综上所述:x=或4或或.