题目内容
【题目】如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为 .
【答案】
【解析】解:如图,连接OB、OD; 设小圆的圆心为P,⊙P与⊙O的切点为G;过G作两圆的公切线EF,交AB于E,交BC于F,
则∠BEF=∠BFE=90°﹣30°=60°,所以△BEF是等边三角形.
在Rt△OBD中,∠OBD=30°,
则OD=BDtan30°=1× = ,OB=2OD= ,BG=OB﹣OG= ;
由于⊙P是等边△BEF的内切圆,所以点P是△BEF的内心,也是重心,
故PG= BG= ;
∴S⊙o=π×( )2= π,S⊙P=π×( )2= π;
∴S阴影=S△ABC﹣S⊙O﹣3S⊙P= ﹣ π﹣ π= ﹣ π.
所以答案是: ﹣ π.
【考点精析】本题主要考查了三角形的内切圆与内心的相关知识点,需要掌握三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心才能正确解答此题.
练习册系列答案
相关题目