题目内容

如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角. (提示:有公共端点的两条重合的射线所组成的角是0°)

1.当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;

2.当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?

3.当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,直接写出你发现的结论.

 

 

1.过点P作直线AC的平行线(如图),易知∠1=∠PAC,∠2=∠PBD,

又∵∠APB=∠1+∠2,

∴∠APB=∠PAC+∠PBD.

2.不成立.

过点P作AC的平行线PQ,∠APB=∠1+∠2,

∵直线AC∥BD,

∴∠PAC+∠1=180°,∠PBD+∠2=180°,

∴∠PAC+∠1+∠PBD+∠2=360°,

故∠APB=∠PAC+∠PBD不成立.(

3.设射线BA将区域③分成Ⅰ、Ⅱ两部分(如左图),

①若点P位于第Ⅰ部分(如中图),则∠PBD=∠3,∠PAC+∠APB=∠3,

所以∠APB=∠PBD-∠PAC,

②若点P位于第Ⅱ部分(如右图),则∠PBD=∠6+∠ABD,∠PAC=∠4+∠5,∠ABD=∠5,

∴∠PAC-∠PBD=∠4-∠6,

而∠6+∠APB=∠4,

∴∠APB=∠PAC-∠PBD.

③P落在射线BA上时,∠PAC=∠PBD,∠APB=0°.

解析:

1.过点P作AC的平行线,根据平行线的性质将∠PAC,∠PBD等量转化,证出结论.

2.过点P作AC的平行线PQ,∠APB=∠APQ+∠QPB,∠PAC与∠APQ是一对同旁内角,∠QPB与∠PBD也是一对同旁内角,根据两直线平行,同旁内角互补,发现三个角的和是360度.

3.根据BA的延长线上,或两侧分别解答.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网