题目内容
【题目】如图所示已知,,OM平分,ON平分;
(1);
(2)如图∠AOB=900,将OC绕O点向下旋转,使∠BOC=,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数,若能,求出其值,若不能,试说明理由.
(3),,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数,若能,求的度数;并从你的求解中看出什么什么规律吗?
【答案】(1);
(2)能,因为∠AOB=900,∠BOC=, 所以∠AOC=900+,
因为OM、 ON平分∠AOC,∠BOC的线
所以∠MOC=∠AOC=(900+)=450+x
所以∠CON=∠BOC=x
所以∠MON=∠MOC-∠CON=450+x-x=450
(3)能,因为∠AOB=,∠BOC=,
所以∠AOC=+,
因为OM、 ON平分∠AOC,∠BOC的线
所以∠MOC=∠AOC=(+)
所以∠CON=∠BOC=
所以∠MON=∠MOC-∠CON=(+)-=
即.
【解析】
(1)根据题意可知,∠AOC=120°,由OM平分∠AOC,ON平分∠BOC;推出∠MOC=∠AOC=60°,∠CON=∠BOC=15°,由图形可知,∠MON=∠MOC-∠CON,即∠MON=45°;(2)根据(1)的求解思路,先利用角平分线的定义表示出∠MOC与∠NOC的度数,然后相减即可得到∠MON的度数;(3)用α、β表示∠MOC,∠NOC,根据∠MON=∠MOC-∠NOC得到.
(1)(1)∵∠AOB=90°,∠BOC=30°,
∴∠AOC=∠AOB+∠BOC=90°+30°=120°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°,
∴∠MON=∠MOC-∠CON=60°-15°=45°;
故答案为:45;
(2)能.∵∠AOB=90°,∠BOC=2x°,
∴∠AOC=90°+2x°,
∵OM、ON分别平分∠AOC,∠BOC,
∴∠MOC=∠AOC=(90°+2x°)=45°+x,
∴∠CON=∠BOC=x,
∴∠MON=∠MOC-∠CON=45°+x-x=45°
(3))∵∠AOB=α,∠BOC=β,
∴∠AOC=∠AOB+∠BOC=α+β,
∵OM平分∠AOC,
∴∠MOC=∠AOC=(α+β),
∵ON平分∠BOC,
∴∠NOC=∠BOC=,
∴∠MON=∠MOC-∠NOC=(α+β)-=.