题目内容
【题目】如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒。
(1)写出数轴上点B表示的数 , 点P表示的数(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;
(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x-8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
【答案】
(1)-6,8-5t
(2)解:设点P运动x秒时,在点C处追上点Q(如图)
则AC=5x,BC=3x,
∵AC-BC=AB
∴5x-3x=14
解得:x=7,
∴点P运动7秒时,在点C处追上点Q
(3)解:没有变化.分两种情况:
①当点P在点A、B两点之间运动时:
MN=MP+NP= AP+ BP= (AP+BP)= AB=7
②当点P运动到点B的左侧时:
MN=MP-NP= AP- BP= (AP-BP)= AB=7
综上所述,线段MN的长度不发生变化,其值为7
(4)解:式子|x+6|+|x-8|有最小值,最小值为14.
【解析】解:(1)点B表示的数是-6;点P表示的数是8-5t,
(1)点B表示的数是-6;点P表示的数是8-5t,
(1)根据点A的坐标和AB之间的距离即可得出B点的坐标和P点的坐标;
(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据距离的差为14列出方程即可求解;
(3)分类讨论:①当点P在点A、B两点之间运动时,根据MN=MP+NP进行计算即可;②当点P运动到点B的左侧时,根据MN=MP-NP计算即可;
(4)分三种情况去绝对值符号:x8时,原式=x+6+x-8=2x-214; -6x8时,原式=x+6+8-x=14; x-6时,原式=-x-6-x+8=-2x+214,综上所述得出最小值。