题目内容
【题目】如图,已知两个全等的等腰三角形如图所示放置,其中顶角顶点(点A)重合在一起,连接BD和CE,交于点F.
(1)求证:BD=CE;
(2)当四边形ABFE是平行四边形时,且AB=2,∠BAC=30°,求CF的长.
【答案】(1)证明见解析;(2)2﹣2
【解析】
(1)根据全等三角形的性质得出AB=AC=AD=AE,∠BAC=∠DAE,求出∠BAD=∠CAE,根据全等三角形的判定得出△BAD≌△CAE,即可得出答案;
(2)根据平行四边形的性质和全等三角形的性质得出EF=AB=2,解直角三角形求出CH,求出CE,即可求出答案.
(1)证明:∵△ABC≌△ADE,AB=AC,
∴AB=AC=AD=AE,∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD和△CAE中
∴△BAD≌△CAE(SAS),
∴BD=CE;
(2)解:∵△ABC≌△ADE,∠BAC=30°,
∴∠BAC=∠DAE=30°,
∵四边形ABFE是平行四边形,
∴AB∥CE,AB=EF,
由(1)知:AB=AC=AE,
∴AB=AC=AE=2,
即EF=2,
过A作AH⊥CE于H,
∵AB∥CE,∠BAC=30°,
∴∠ACH=∠BAC=30°,
在Rt△ACH中,AH===1,CH===,
∵AC=AE,CH⊥CE,
∴CE=2CH=2,
∴CF=CE﹣EF=2﹣2.
【题目】在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.
月信息消费额分组统计表
组别 | 消费额(元) |
A | 10≤x<100 |
B | 100≤x<200 |
C | 20≤x<300 |
D | 300≤x<400 |
E | x≥400 |
请结合图表中相关数据解答下列问题:
(1)这次接受调查的有 户;
(2)在扇形统计图中,“E”所对应的圆心角的度数是 ;
(3)请你补全频数直方图;
(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?