题目内容
【题目】有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
求证:RQ为⊙O的切线.
变化二:运动探究:
(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断)
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?
(3)若OA所在的直线向上平移且与⊙O无公共点,请你根据原题中的条件完成图4,并判断结论是否还成立?(只需交待判断)
【答案】变化一:见解析;变化二:(1)若OA向上平移,变化一中的结论还成立;(2)原题中的结论还成立,理由见解析;(3)原题中的结论还成立.
【解析】
原命题的证明:连接OQ,利用RQ为⊙O的切线,得出∠OQB+∠PQR=90°;根据半径OB=OQ及OA⊥OB,得出∠OQB=∠OBQ,∠OBQ+∠BPO=90°;从而得∠PQR=∠QPR,由在同一个三角形中,等角对等边,证明结论.
变化一的证明:与原命题的证明过程相反,由RP=RQ,可知∠PQR=∠QPR=∠BPO;由OB=OQ,OA⊥OB得出∠OQB=∠OBQ,∠OBQ+∠BPO=90°;再利用互余关系将角进行转化,证明∠OQB+∠PQR=90°,即∠OQR=90°;最后由∠OQR=90°即可知RQ为⊙O的切线;
变化二的证明:连接OQ,仿照原命题的证明方法进行即可.
证明:连接OQ,
∵RQ为⊙O的切线,
∴∠OQR=∠OQB+∠PQR=90°,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠PQR=∠BPO,
而∠BPO=∠QPR,
∴∠PQR=∠QPR,
∴RP=RQ;
变化一:
证明:∵RP=RQ,∴∠PQR=∠QPR=∠BPO,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠OQB+∠PQR=90°,即∠OQR=90°,
∴RQ为⊙O的切线;
变化二.
(1)若OA向上平移,变化一中的结论还成立;
(2)原题中的结论还成立.
理由:连接OQ,
∵RQ为⊙O的切线,
∴∠OQR=90°,∠BQO+∠RQP=90°,
又∵OB=OQ,OP⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠RQP=∠BPO,
∴RP=RQ;
(3)原题中的结论还成立,如图.