题目内容
【题目】如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是( )
A. 4 B. 3 C. 2 D. 1
【答案】A
【解析】试题解析:由抛物线的开口向下,且对称轴为x=1可知a<0,-=1,即b=-2a>0,
由抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上知c=1,
则abc<0,故①正确;
由①知y=ax2-2ax+1,
∵x=-1时,y=a+2a+1=3a+1<0,
∴a<-,故②正确;
∵抛物线y=ax2+bx+c(a≠0)的顶点在一次函数y=kx+1(k≠0)的图象上,
∴a+b+1=k+1,即a+b=k,
∵b=-2a,
∴-a=k,即a=-k,故③正确;
由函数图象知,当0<x<1时,二次函数图象在一次函数图象上方,
∴ax2+bx+1>kx+1,即ax2+bx>kx,
∵x>0,
∴ax+b>k,故④正确;
故选A.
练习册系列答案
相关题目