题目内容

【题目】菱形ABCD中,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°
(1)如图1,当点E是CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(2)如图2,当点E在CB的延长线上时,且∠EAB=15°,求点F到BC的距离.

【答案】
(1)证明:连接AC,如图1中,∵∠BAC=∠EAF=60°,

∴∠BAE=∠CAE,

在△BAE和△CAF中,

∴△BAE≌△CAF,

∴BE=CF


(2)解:如图2中,过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,

∵∠EAB=15°,∠ABC=60°,

∴∠AEB=45°,

在RT△AGB中,∵∠ABC=60°,AB=4,

∴BG= AB=2,AG= BG=2

在RT△AEG中,∵∠AEG=∠EAG=45°,

∴AG=GE=2

∴EB=EG﹣BG=2 ﹣2,

∵△AEB≌△AFC,

∴AE=AF,EB=CF=2 ﹣2,

在RT△CHF中,∵∠HCF=180°﹣∠BCD=60°,CF=2 ﹣2,

∴FH=CFsin60°=(2 ﹣2) =3﹣

∴点F到BC的距离为3﹣


【解析】(1)欲证明BE=CF,只要证明△BAE≌△CAF即可.(2)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CFcos30°,因为CF=BE,只要求出BE即可解决问题.
【考点精析】解答此题的关键在于理解菱形的性质的相关知识,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网