题目内容
【题目】菱形ABCD中,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°
(1)如图1,当点E是CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(2)如图2,当点E在CB的延长线上时,且∠EAB=15°,求点F到BC的距离.
【答案】
(1)证明:连接AC,如图1中,∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAE,
在△BAE和△CAF中,
,
∴△BAE≌△CAF,
∴BE=CF
(2)解:如图2中,过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,
∵∠EAB=15°,∠ABC=60°,
∴∠AEB=45°,
在RT△AGB中,∵∠ABC=60°,AB=4,
∴BG= AB=2,AG= BG=2 ,
在RT△AEG中,∵∠AEG=∠EAG=45°,
∴AG=GE=2 ,
∴EB=EG﹣BG=2 ﹣2,
∵△AEB≌△AFC,
∴AE=AF,EB=CF=2 ﹣2,
在RT△CHF中,∵∠HCF=180°﹣∠BCD=60°,CF=2 ﹣2,
∴FH=CFsin60°=(2 ﹣2) =3﹣ .
∴点F到BC的距离为3﹣
【解析】(1)欲证明BE=CF,只要证明△BAE≌△CAF即可.(2)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CFcos30°,因为CF=BE,只要求出BE即可解决问题.
【考点精析】解答此题的关键在于理解菱形的性质的相关知识,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
【题目】为了了解某校九年级(1)班学生的体育测试情况,对全班学生的体育成绩进行了统计,并绘制出以下不完整的频数分布表和扇形统计图
分组 | 分数段(分) | 频数 |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
(1)求全班学生人数和m的值;
(2)该班学生的体育成绩的中位数落在哪个分数段内?
(3)该班体育成绩满分(60分)共有3人,其中男生2人,女生1人,现从这3人中随机选取2人参加校运动会,求恰好选到一男一女生的概率