题目内容
【题目】如图,在平面直角坐标系中,Rt△ABC的顶点B、C的坐标分别为(3,4)、(4,2),且AB平行于x轴,将Rt△ABC向左平移,得到Rt△A′B′C′.若点B′、C′同时落在函数y=(x>0)的图象上,则k的值为( )
A.2B.4C.6D.8
【答案】B
【解析】
设平移的距离为m,由点B、C的坐标可以表示出B′、C′的坐标,B′、C′都在反比例函数的图象上,可得方程,求出m的值,进而确定点B′、C′的坐标,代入可求出k的值.
设Rt△ABC向左平移m个单位得到Rt△A′B′C′.
由B(3,4)、C(4,2),得:B′(3-m,4),C′(4-m,2)
点B′(3-m,4),C′(4-m,2)都在反比例函数的图象上,
∴(3-m)×4=(4-m)×2,
解得:m=2,
∴B′(1,4),C′(2,2)代入反比例函数的关系式得:k=4,
故选:B.
练习册系列答案
相关题目