题目内容
如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,M为AC上一点,且CM=CD,求∠ADM的度数.
在△ABC中,AB=AC,∠BAC=120°,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
又∵CM=CD,
∴∠CDM=∠CMD=
×(180°-30°)=75°,
∵AB=AC,BD=CD,
∴AD⊥BC,即∠ADC=90°,
∴∠ADM=∠ADC-∠CDM=90°-75°=15°.
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
又∵CM=CD,
∴∠CDM=∠CMD=
1 |
2 |
∵AB=AC,BD=CD,
∴AD⊥BC,即∠ADC=90°,
∴∠ADM=∠ADC-∠CDM=90°-75°=15°.
练习册系列答案
相关题目