题目内容
【题目】矩形纸片ABCD,AB=7,BC=4,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E、F,则EF=__________________.
【答案】或
【解析】
如图1,当点P在CD上时,由折叠的性质得到四边形PFBE是正方形,EF过点C,根据勾股定理即可得到结果;如图2当点P在AD上时,过E作EQ⊥AB于Q,根据勾股定理得到PB的长,推出△ABP∽△EFQ,列比例式即可得到结果.
如图1,当点P在CD上时,
∵PD=3,CD=AB=7,
∴CP=4,
∵EF垂直平分PB,
∴四边形PFBE是正方形,EF过点C,
∴EF=
如图2,当点P在AD上时,过E作EQ⊥AB于Q,
∵PD=3,AD=4,
∴AP=1,
∴PB=
∵EF垂直平分PB,
∴∠1=∠2,
∵∠A=∠EQF,
∴△ABP∽△EFQ,
∴,即
解得EF=
综上所述:EF长为或
故答案为:或
练习册系列答案
相关题目
【题目】服装店准备购进甲乙两种服装共100件,费用不得超过7500元.甲种服装每件进价80元,每件售价120元;乙种服装每件进价60元,每件售价90元.
(Ⅰ)设购进甲种服装件,试填写下表.
表一
购进甲种服装的数量/件 | 10 | 20 | … | |
购进甲种服装所用费用/元 | 800 | 1600 | … | |
购进乙种服装所用费用/元 | 5400 | … |
表二
购进甲种服装的数量/件 | 10 | 20 | … | |
甲种服装获得的利润/元 | 800 | … | ||
乙种服装获得的利润/元 | 2700 | 2400 | … |
(Ⅱ)给出能够获得最大利润的进货方案,并说明理由.