题目内容
【题目】【定义】已知P为△ABC所在平面内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,若存在一个三角形与△ABC相似(全等除外),那么就称P为△ABC的“共相似点”,根据“共相似点”是否落在三角形的内部,边上或外部,可将其分为“内共相似点”,“边共相似点”或“外共相似点”.
(1)据定义可知,等边三角形(填“存在”或“不存在”)共相似点.
(2)如图1,若△ABC的一个边共相似点P与其对角顶点B的连线,将△ABC分割成的两个三角形恰与原三角形均相似,试判断△ABC的形状,并说明理由.
(3)如图2,在△ABC中,∠A<∠B<∠C,高线CD与角平分线BE交于点P,若P是△ABC的一个内共相似点,试说明点E是△ABC的边共相似点,并直接写出∠A的度数.
(4)如图3,在Rt△ABC中,∠C=90°,∠A=30°,BC= ,若△PBC与△ABC相似,则满足条件的P点共有个,顺次连接所有满足条件的P点而围成的多边形的周长为 .
【答案】
(1)不存在
(2)
解:△ABC是直角三角形,理由如下:
根据题意得:△ABP∽△ACB,
∴∠ABP=∠C,
同理得:∠CBP=∠A,
∴∠ABC=∠A+∠C=180°﹣∠ABC,
解得:∠ABC=90°,
∴△ABC是直角三角形;
(3)
解:根据题意得:△PBC∽△CAB,
∴∠PBC=∠A,∠PCB=∠ABC,
∵BE平分∠ABC,
∴∠ABE=∠PBC,
∴∠A=∠ABE=∠PBC,
∴∠PCB=∠ABC=2∠A=2∠PBC,
∵∠BCE=∠ACB,∠PBC=∠A,
∴△BEC∽△ABC,
∴点E是△ABC的边共相似点;
∵CD是△ABC的高,
∴∠CDB=90°,
∴∠PCB+∠ABC=90°,
∴2∠A+2∠A=90°,
解得:∠A=22.5°;
(4)8;6+
【解析】解:(1)根据“共相似点”的定义得:等边三角形不存在共相似点.
所以答案是:不存在;
4)作CP⊥AB于P,则P为△ABC的“共相似点”;
过B作BC的垂线与CP的延长线的交点是△ABC的“共相似点”;
作∠ABC的平分线与AC的交点P1是△ABC的“共相似点”;
过C作BP1的垂线,垂足是△ABC的“共相似点”;
同理:以上四个△ABC的“共相似点”关于直线BC的对称点是△ABC的“共相似点”;
∴△ABC的“共相似点”共有8个,如图所示:
根据等边三角形的性质和直角三角形的性质得:顺次连接所有满足条件的P点而围成的多边形的周长为 2×2+4× +2× =6+ ;
所以答案是:8;6+ .
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.