题目内容

【题目】在矩形ABCD中,AB4AD3,矩形内部有一动点P满足S矩形ABCD3SPAB,则PA+PB的最小值为_____

【答案】4

【解析】

首先由S矩形ABCD=3SPAB,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.

ABPAB边上的高是h

S矩形ABCD=3SPAB

ABh=ABAD

h= AD=2

∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.

RtABE中,∵AB=4AE=2+2=4

BE=

PA+PB的最小值为4

故答案为:4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网