题目内容
(2011•成都)已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.
(1)求证:AE=CK;
(2)如果AB=a,AD=(a为大于零的常数),求BK的长:
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.
(1)求证:AE=CK;
(2)如果AB=a,AD=(a为大于零的常数),求BK的长:
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.
(1)证明:∵四边形据ABCD是矩形,
∴AD=BC,
∵BK⊥AC,DH∥KB,
∴∠BKC=∠AED=90°,
∴△BKC≌△ADE,
∴AE=CK;
(2)∵AB=a,AD==BC,
∴AC===
∵BK⊥AC,
∴△BKC∽△ABC,
∴=,
∴=,
∴BK=a,
∴BK=a.
(3)连接OF,
∵ABCD为矩形,
∴=,
∴EF=ED=×6=3,
∵F是EG的中点,
∴GF=EF=3,
∵△AFD≌△HBF,
∴HF=FE=3+6=9,
∴GH=6,
∵DH∥KB,ABCD为矩形,
∴AE2=EF•ED=3×6=18,
∴AE=3,
∵△AED∽△HEC,
∴==,
∴AE=AC,
∴AC=9,
则AO=.
∴AD=BC,
∵BK⊥AC,DH∥KB,
∴∠BKC=∠AED=90°,
∴△BKC≌△ADE,
∴AE=CK;
(2)∵AB=a,AD==BC,
∴AC===
∵BK⊥AC,
∴△BKC∽△ABC,
∴=,
∴=,
∴BK=a,
∴BK=a.
(3)连接OF,
∵ABCD为矩形,
∴=,
∴EF=ED=×6=3,
∵F是EG的中点,
∴GF=EF=3,
∵△AFD≌△HBF,
∴HF=FE=3+6=9,
∴GH=6,
∵DH∥KB,ABCD为矩形,
∴AE2=EF•ED=3×6=18,
∴AE=3,
∵△AED∽△HEC,
∴==,
∴AE=AC,
∴AC=9,
则AO=.
略
练习册系列答案
相关题目