题目内容
【题目】如图,在ABCD中,过A、C、D三点的⊙O交AB于点E,连接DE、CE,∠CDE=∠BCE.
(1)求证:AD=CE;
(2)判断直线BC与⊙O的位置关系,并说明理由;
(3)若BC=4,DE=10,求BE的长.
【答案】(1)证明见解析;(2)直线BC与⊙O相切;(3);
【解析】
(1)由平行四边形的性质得出∠AED=∠EDC,证出=,
即可得出AD=CE;
(2)作直径CF,连接EF,则∠EFC=∠EDC,证出∠EFC=∠BCE,再由CF是 O的直径,得出∠FEC=90°,得出∠BCF=90°,即可得出结论;
(3)证明△BCE∽△EDC,得出对应边成比例,即可得出结果.
(1)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠AED=∠EDC.
∴=,
∴AD=CE;
(2)解:直线BC与⊙O相切,理由如下:
如图所示:作直径CF,连接EF.
则∠EFC=∠EDC,
∵∠BCE=∠CDE,
∴∠EFC=∠BCE,
∵CF是⊙O的直径,
∴∠FEC=90°,
∴∠EFC+∠FCE=90°,
∴∠BCE+∠FCE=90°
∴∠BCF=90°,
∴OC⊥CB.
∴直线BC与⊙O相切;
(3)解:∵四边形ABCD是平行四边形,
∴AD=BC,AB∥CD,
由(1)得:AD=CE,
∴BC=CE,
∵AB∥CD,
∴∠BEC=∠DCE.
又∵∠BCE=∠CDE,
∴△BCE∽△EDC,
∴=,
∵BC=4∴CE=4,
即 =,
解得,BE=.
【题目】2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:
图书种类 | 频数(本) | 频率 |
名人传记 | 175 | a |
科普图书 | b | 0.30 |
小说 | 110 | c |
其他 | 65 | d |
(1)求该校九年级共捐书多少本;
(2)统计表中的a= ,b= ,c= ,d= ;
(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;
(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.