题目内容
已知:ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD, A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).
⑴求证:四边形ABCD是矩形;
⑵在四边形ABCD中,求的值.
(1)证明:连结OE
∵四边形ABCD是平行四边形,
∴DO=OB,
∵四边形DEBF是菱形,
∴DE=BE,
∴EO⊥BD
∴∠DOE= 90°
即∠DAE= 90°
又四边形ABCD是平行四边形,
∴四边形ABCD是矩形
(2)解:∵四边形DEBF是菱形
∴∠FDB=∠EDB
又由题意知∠EDB=∠EDA
由(1)知四边形ABCD是矩形
∴∠ADF=90°,即∠FDB+∠EDB+∠ADE=90°
则∠ADB= 60°
∴在Rt△ADB中,有AD∶AB=1∶
即
解析
练习册系列答案
相关题目