题目内容
【题目】如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.
【答案】
【解析】
如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x ),∠FEG=∠CEG;同理可证AF=AD=5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.
连接EG;
∵四边形ABCD为矩形,
∴∠D=∠C=90°,DC=AB=4;
由题意得:EF=DE=EC=2,∠EFG=∠D=90°;
在Rt△EFG与Rt△ECG中,
,
∴Rt△EFG≌Rt△ECG(HL),
∴FG=CG(设为x ),∠FEG=∠CEG;
同理可证:AF=AD=5,∠FEA=∠DEA,
∴∠AEG=×180°=90°,
而EF⊥AG,可得△EFG∽△AFE,
∴
∴22=5x,
∴x=,
∴CG=,
故答案为:.
练习册系列答案
相关题目