题目内容

【题目】如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为

【答案】4 或4 或4
【解析】如图1,当∠AMB=90°时,

∵O是AB的中点,AB=8,

∴OM=OB=4,

又∵∠AOC=∠BOM=60°,

∴△BOM是等边三角形,

∴BM=BO=4,

∴Rt△ABM中,AM= =4

如图2,当∠AMB=90°时,

∵O是AB的中点,AB=8,

∴OM=OA=4,

又∵∠AOC=60°,

∴△AOM是等边三角形,

∴AM=AO=4;

如图3,当∠ABM=90°时,

∵∠BOM=∠AOC=60°,

∴∠BMO=30°,

∴MO=2BO=2×4=8,

∴Rt△BOM中,BM= =4

∴Rt△ABM中,AM= =4

综上所述,当△ABM为直角三角形时,AM的长为4 或4 或4.

所以答案是:4 或4 或4.

【考点精析】关于本题考查的等腰三角形的性质和勾股定理的概念,需要了解等腰三角形的两个底角相等(简称:等边对等角);直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网