题目内容
【题目】问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图 1,图 2 都是 8×8 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点.
操作发现:小颖在图 1 中画出△ABC,其顶点 A,B,C 都是格点,同时构造正方形 BDEF, 使它的顶点都在格点上,且它的边 DE,EF 分别经过点 C,A,她借助此图求出了△ABC 的面积.
(1)在图 1 中,小颖所画的△ABC 的三边长分别是 AB= ,BC= ,AC
= ;△ABC 的面积为 . 解决问题:
(2)已知△ABC 中,AB=,BC=2 ,AC=5 ,请你根据小颖的思路,在图 2的正方形网格中画出△ABC,并直接写出△ABC 的面积.
【答案】(1);(2)图见解析,5
【解析】
根据勾股定理、矩形的面积公式、三角形面积公式计算.
解:(1)AB==5,BC==,AC==,
△ABC 的面积为:4×4﹣×3×4-×1×4﹣×3×1= ,
故答案为:5; ;;;
(2)△ABC 的面积:7×2﹣×3×1﹣ ×4×2﹣ ×7×1=5.
【题目】为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:
一周诗词诵背数量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人数 | 1 | 3 | 5 | 6 | 10 | 15 |
请根据调查的信息
(1)活动启动之初学生“一周诗词诵背数量”的中位数为_____________,平均数为___________;
(2)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.