题目内容
如图,在四边形ABCD中,M、N分别是CD、BC的中点, 且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则∠ADC度数为( ) .
A、45° B、47° C、49° D、51°
A、45° B、47° C、49° D、51°
C
试题分析:首先要求出∠3,∠4的度数,然后连接AC,利用角与角的和差关系求得∠ADC的度数.
∵AM⊥CD,AN⊥BC,∠MAN=74°,∠DBC=41°即∠4=41°,
∴四边形AMCN是圆内接四边形,
∴∠MAN+∠BCD=180°,
∴∠BCD=180°-∠MAN=180°-74°=106°
∴∠3=180-∠2-∠BCD=180°-41°-106°=33°,
连接AC
∵M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,
∴AB=AC=AD,∠1=∠2,
∠1+∠4=∠ACB---①,
∠2+∠3=∠ACD----②
∠ACB+∠ACD=∠NCM=106°---③
由①②③得∠1+∠2+∠3+∠4=106°
∵∠1=∠2,∠4=41°,∠3=33°,
代入得:∠2=16°,
故∠ADC=∠2+∠3=16°+33°=49°.
故选C.
点评:作出辅助线后利用线段垂直平分线的性质,四边形及三角形的内角和定理解答是解答本题的关键.
练习册系列答案
相关题目