题目内容
【题目】如图,△ACB和△DCE均为等腰三角形,点A、D、E在同一直线上,连接BF.若∠CAB=∠CBA=∠CDE=∠CED=50°.
(1)求证:AD=BE;
(2)求∠AEB的度数.
【答案】(1)见解析;(2)80°.
【解析】试题分析:(1)通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;
(2)结合(1)中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数.
试题解析:(1)∵∠CAB=∠CBA=∠CDE=∠CED=50°,
∴∠ACB=∠DCE=180°-2×50°=80°,
∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,
∴∠ACD=∠BCE,
∵△ACB和△DCE均为等腰三角形,
∴AC=BC,DC=EC,
在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE;
(2)∵△ACD≌△BCE,∴∠ADC=∠BEC,
∵点A、D、E在同一直线上,且∠CDE=50°,
∴∠ADC=180°-∠CDE=130°,∴∠BEC=130°,
∵∠BEC=∠CED+∠AEB,且∠CED=50°,
∴∠AEB=∠BEC-∠CED=130°-50°=80°.
练习册系列答案
相关题目