题目内容
【题目】如图,矩形边,,沿折叠,使点与点重合,点的对应点为,将绕着点顺时针旋转,旋转角为.记旋转过程中的三角形为,在旋转过程中设直线与射线、射线分别交于点、,当时,则的长为_______.
【答案】
【解析】
设AE=x=FC=FG,则BE=ED=8-x,根据勾股定理可得:x=,进而确定BE、EF的长,再由折叠性质可得∠BEF=∠DEF=∠BFE和∠DEF=∠NME=∠F',可证四边形BEMF'为平行四边形,进而得到平行四边形BEMF'为菱形,由菱形的性质可得EM=BE,最后由即可解答.
解:如图:AE=x=FC=FG,则,
在中,有,即,
解得,
,,
由折叠的性质得,
,
,
,,
四边形为平行四边形,
由旋转的性质得:,
,
平行四边形为菱形,
,
.
练习册系列答案
相关题目