题目内容
【题目】如图,Rt△ABC中,∠C=90°,∠A=30°.
(1)作线段AB的垂直平分线DE,垂足为点E,交AC于点D,要求用尺规作图,保留作图痕迹,标注有关字母,不要求写作法和证明;
(2)连接BD,直接写出∠CBD的度数;
(3)如果△BCD的面积为4,请求出△BAD的面积.
【答案】(1)详见解析;(2)30°;(3)8.
【解析】
(1)利用基本作图,作AB的垂直平分线即可;
(2)利用垂直平分线的性质得DA=DB,则∠DBA=∠A=30°,然后计算∠ABC-∠DBA即可;
(3)在Rt△BCD中利用含30度的直角三角形三边的关系得到DB=2CD,则DA=2CD,然后根据三角形面积公式得到S△ABD=2S△BCD=8.
(1)如图,DE为所作;
(2)∵DE垂直平分AB,
∴DA=DB,
∴∠DBA=∠A=30°,
∵∠ABC=90°﹣∠A=60°,
∴∠CBD=∠ABC﹣∠DBA=60°﹣30°=30°;
(3)在Rt△BCD中,∵∠CBD=30°,
∴DB=2CD,
而DA=DB,
∴DA=2CD,
∴S△ABD=2S△BCD=8.
练习册系列答案
相关题目