题目内容
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
① 求证:△ABE≌△CBD;
② 若∠CAE=30°,求∠BDC的度数.
【答案】①证明见解析②∠BDC=75°
【解析】试题分析:(1)利用“边角边”证明△ABE≌△CBD即可;②先根据等腰直角三角形的锐角都是45°求出∠CAB,再求出∠BAE,然后根据全等三角形对应角相等求出∠BCD,再根据直角三角形两锐角互余其解即可;
试题解析:
(1)证明:∵∠ABC=90°,D为AB延长线上一点,
∴∠ABE=∠CBD=90°,
在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS);
(2)∵AB=CB,∠ABC=90°,
∴∠CAB=45°,
∵∠CAE=30°,
∴∠BAE=∠CAB-∠CAE=45°-30°=15°,
∵△ABE≌△CBD,
∴∠BCD=∠BAE=15°,
∴∠BDC=90°-∠BCD=90°-15°=75°;
练习册系列答案
相关题目