题目内容
【题目】如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是 .
【答案】≤a≤
.
【解析】
试题分析:①当正方形ABCD的对角线AC在正六边形一组平行的对边的中点上时,正方形边长a的值最小,AC是正方形的对角线,∴AC=A′D=,∴a=
;
②当正方形ABCD的四个顶点都在正六边形的边上时,正方形边长a的值最大,AC是正方形的对角线AC,则△AEB是等腰三角形,四边形AFGD是等腰梯形,过F,G分别作FH⊥AD,GN⊥AD,设AE=x,则AF=1﹣x,∴AB=x,AH=DN=
(1﹣x),∴AD=1+(1﹣x),∴
x=1+(1﹣x),∴x=
,∴AB=
,∴正方形边长a的取值范围是:
≤a≤
,故答案为:
≤a≤
.