题目内容
【题目】如图,△AOB是等腰直角三角形,直线BD∥OA,OB=OA=1,P是线段AB上一动点,过P点作MN∥OB,分别交OA、BD于M、N,PC⊥PO,交BD于点C.
(1)求证:OP=PC;
(2)当点C在射线BN上时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线BN上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形时的PM的值;如果不可能,请说明理由.
【答案】(1)证明见解析;(2)s=m2﹣m+1(0≤m≤).(3) 0或.
【解析】试题分析:(1)首先利用矩形的判定得出四边形OBNM为矩形,即可得出∠CPN=∠POM,进而得出△OPM≌△PCN,求出即可;
(2)利用S=S△OPB+S△PBC进而得出S与m的函数关系;
(3)利用①当点P与点A重合时,PC=BC=1,②如图②,当点C在OB下方,且PB=CB时,分别求出即可.
试题解析:(1)证明:如图①,△AOB是等腰直角三角形,AO=BO=1,
∴∠A=45°,∠AOB=90°,
直线BN∥OA,MN∥OB,
∴四边形OBNM为矩形,
∴MN=OB=1,∠PMO=∠CNP=90°
而∠AMP=90°,∠A=∠APM=∠BPN=45°,
∴OM=BN=PN,
∵∠OPC=90°,
∴∠OPM+∠CPN=90°,
又∵∠OPM+∠POM=90°,
∴∠CPN=∠POM,
在△OPM和△PCN中
∴△OPM≌△PCN(ASA),
∴OP=PC,
(2)解:∵AM=PM=APsin45°=m,
∴NC=PM=m,∴BN=OM=PN=1﹣m;
∴BC=BN﹣NC=1﹣m﹣m=1﹣m,
S=S△OPB+S△PBC=BOMO+BCPN,
=m2﹣m+1(0≤m≤);
(3)解:△PBC可能为等腰三角形,
①当点P与点A重合时,PC=BC=1,此时PM=0,
②如图②,当点C在OB下方,且PB=CB时,
有OM=BN=PN=1﹣m,
∴BC=PB=PN=﹣m,
∴NC=BN+BC=1﹣m+﹣m,
由(2)知:NC=PM=m,
∴1﹣m+﹣m=m,
∴m=1.
∴PM=m=;
∴使△PBC为等腰三角形时的PM的值为0或.