题目内容
【题目】如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M.则下列结论中:
①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC
正确结论的个数有( )
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】
建立以B点位坐标原点的平面直角坐标系,分别求出相应直线的解析式和点的坐标,求出各线段的距离,可得出结论.
解:如图,
建立以B点为坐标原点的平面直角坐标系,设正方形边长为2,可分别得各点坐标,
A(0,2),B(0,0),C(2,0),D(2,2), E为CD的中点,可得E点坐标(2,1),可得AE的直线方程,,由OF为直线AE的中垂线可得O点为,设直线OF的斜率为K,得,可得k=2,同时经过点O(),可得OF的直线方程:
,可得OF与x轴、y轴的交点坐标G(,0),H(0,),及F(,2),
同理可得:直线CO的方程为:,可得M点坐标(,2),
可得:①FG=,
AO= =,
故FG=2AO,故①正确;
②:由O点坐标,D点坐标(2,2),可得OD的方程:,
由H点坐标(0,),E点坐标(2,1),可得HE方程:,
由两方程的斜率不相等,可得OD不平行于HE,
故②错误;
③由A(0,2),M(,2),H(0,),E(2,1),
可得:BH=,EC=1,AM=,MD=,
故=,
故③正确;
④:由O点坐标,E(2,1),H(0,),D(2,2),
可得:,
AH=,DE=1,有2OE2=AHDE,
故④正确;
⑤:由G(,0),O点坐标,H(0,),C(2,0),
可得:,
BH=,HC=,
可得:GO≠BH+HC,
故正确的有①③④,
故选B.
练习册系列答案
相关题目